Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 4(6): 740-55, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27308200

RESUMO

In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)hederagenin was found to produce numerous ring-like micelles when formulated, while C-28 choline ester derivatives preferred self-assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3-O-(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo.

2.
ACS Chem Biol ; 2(11): 725-34, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18030989

RESUMO

Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/química , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Isótopos , Mimetismo Molecular , Sondas Moleculares , Ligação Proteica , Conformação Proteica
3.
Org Biomol Chem ; 5(17): 2800-2, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17700848

RESUMO

The title compound (+)-, required for production of transition state analogue inhibitors of enzymes involved in T-cell-dependent disorders, was synthesized in five steps. A 1,3-dipolar cycloaddition of the nitrone formed from formaldehyde and N-benzylhydroxylamine to diethyl maleate gave the racemic cis-isoxazolidine (+/-)-. Reduction of the N-O bond of this compound gave pyrrolidone (+/-)- in excellent yield. A very efficient enzymic resolution of this racemic product led to the title enantiomer (+)-. This route employs only one chromatographic purification.


Assuntos
Pirrolidinas/síntese química , Estrutura Molecular , Pirrolidinas/química
4.
Biochemistry ; 45(43): 12929-41, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17059210

RESUMO

Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S(N)1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Núñez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S(N)1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K(i) of 1.0 microM. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K(i) values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K(i) value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K(i) value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 10(3)-10(4)-fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since k(cat)/K(m) for S. pneumoniae MTAN is decreased 845-fold relative to that of E. coli MTAN.


Assuntos
N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise/efeitos dos fármacos , Cristalografia por Raios X/métodos , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , N-Glicosil Hidrolases/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ribitol/análogos & derivados , Ribitol/farmacologia , Análise de Sequência de Proteína , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
5.
Org Biomol Chem ; 4(6): 1131-9, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16525558

RESUMO

(1R)-1-(9-Deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-L-ribitol [(+)-5] and (3S,4S)-1-[(9-deazahypoxanthin-9-yl)methyl]-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] are the L-enantiomers of immucillin-H (D-ImmH) and DADMe-immucillin-H (D-DADMe-ImmH), respectively, these D-isomers being high affinity transition state analogue inhibitors of purine nucleoside phosphorylases (PNPases) developed as potential pharmaceuticals against diseases involving irregular activation of T-cells. The C-nucleoside hydrochloride D-ImmH [(-)-5) x HCl], now "Fodosine" is in phase II clinical trials as an anti-T-cell leukaemia agent, while D-DADMe-ImmH is a second generation inhibitor with extreme binding to the target enzyme and has entered the clinic for phase I testing as an anti-psoriasis drug. Since the enantiomers of some pharmaceuticals have revealed surprising biological activities, the L-nucleoside analogues (+)-5 x HCl and (-)-6, respectively, of D-ImmH and D-DADMe-ImmH, were prepared and their PNPase binding properties were studied. For the synthesis of compound (-)-6 suitable enzyme-based routes to the enantiomerically pure starting material (3S,4S)-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] and its enantiomer were developed. The L-enantiomers (+)-5 x HCl and (-)-6 bind to the PNPases approximately 5- to 600-times less well than do the D-compounds, but nevertheless remain powerful inhibitors with nanomolar dissociation constants.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Indicadores e Reagentes , Cinética , Modelos Moleculares , Conformação Molecular , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Pirrolidinas/química , Pirrolidinas/farmacologia , Estereoisomerismo
6.
J Med Chem ; 48(14): 4679-89, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16000004

RESUMO

The polyamine biosynthetic pathway is a therapeutic target for proliferative diseases because cellular proliferation requires elevated levels of polyamines. A byproduct of the synthesis of spermidine and spermine is 5'-methylthioadenosine (MTA). In humans MTA is processed by 5'-methylthioadenosine phosphorylase (MTAP) so that significant amounts of MTA do not accumulate. Products of the MTAP reaction (adenine and 5-methylthio-alpha-D-ribose-1-phosphate) are recycled to S-adenosylmethionine, the precursor for polyamine synthesis. Potent inhibitors of MTAP might allow the build-up of sufficient levels of MTA to generate feedback inhibition of polyamine biosynthesis and/or reduce S-adenosylmethionine levels. We recently reported the design and synthesis of a family of potent transition state analogue inhibitors of MTAP. We now report the synthesis of a second generation of stable transition state analogues with increased distance between the ribooxocarbenium ion and purine mimics. These compounds are potent inhibitors with equilibrium dissociation constants as low as 10 pM. The first and second generation inhibitors represent synthetic approaches to mimic early and late features of a dissociative transition state.


Assuntos
Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purinas/síntese química , Pirrolidinas/síntese química , Adenina/análogos & derivados , Adenina/síntese química , Adenina/química , Humanos , Purina-Núcleosídeo Fosforilase/química , Purinas/química , Pirrolidinas/química , Estereoisomerismo , Relação Estrutura-Atividade
7.
J Biol Chem ; 280(34): 30320-8, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15961383

RESUMO

Human purine nucleoside phosphorylase (huPNP) is essential for human T-cell division by removing deoxyguanosine and preventing dGTP imbalance. Plasmodium falciparum expresses a distinct PNP (PfPNP) with a unique substrate specificity that includes 5'-methylthioinosine. The PfPNP functions both in purine salvage and in recycling purine groups from the polyamine synthetic pathway. Immucillin-H is an inhibitor of both huPNP and PfPNPs. It kills activated human T-cells and induces purine-less death in P. falciparum. Immucillin-H is a transition state analogue designed to mimic the early transition state of bovine PNP. The DADMe-Immucillins are second generation transition state analogues designed to match the fully dissociated transition states of huPNP and PfPNP. Immucillins, DADMe-Immucillins and related analogues are compared for their energetic interactions with human and P. falciparum PNPs. Immucillin-H and DADMe-Immucillin-H are 860 and 500 pM inhibitors against P. falciparum PNP but bind human PNP 15-35 times more tightly. This common pattern is a result of kcat for huPNP being 18-fold greater than kcat for PfPNP. This energetic binding difference between huPNP and PfPNP supports the k(chem)/kcat binding argument for transition state analogues. Preferential PfPNP inhibition is gained in the Immucillins by 5'-methylthio substitution which exploits the unique substrate specificity of PfPNP. Human PNP achieves part of its catalytic potential from 5'-OH neighboring group participation. When PfPNP acts on 5'-methylthioinosine, this interaction is not possible. Compensation for the 5'-OH effect in the P. falciparum enzyme is provided by improved leaving group interactions with Asp206 as a general acid compared with Asn at this position in huPNP. Specific atomic modifications in the transition state analogues cause disproportionate binding differences between huPNP and PfPNPs and pinpoint energetic binding differences despite similar transition states.


Assuntos
Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/química , Animais , Ácido Aspártico/química , Bovinos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Poliaminas/química , Ligação Proteica , Estrutura Terciária de Proteína , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/metabolismo , Purinas/química , Pirimidinonas/química , Pirróis/química , Eletricidade Estática , Especificidade por Substrato , Linfócitos T/metabolismo
8.
J Biol Chem ; 280(18): 18265-73, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15749708

RESUMO

Escherichia coli 5'-methylthioadenosine/S-adenosyl-homocysteine nucleosidase (MTAN) hydrolyzes its substrates to form adenine and 5-methylthioribose (MTR) or S-ribosylhomocysteine (SRH). 5'-Methylthioadenosine (MTA) is a by-product of polyamine synthesis and SRH is a precursor to the biosynthesis of one or more quorum sensing autoinducer molecules. MTAN is therefore involved in quorum sensing, recycling MTA from the polyamine pathway via adenine phosphoribosyltransferase and recycling MTR to methionine. Hydrolysis of MTA by E. coli MTAN involves a highly dissociative transition state with ribooxacarbenium ion character. Iminoribitol mimics of MTA at the transition state of MTAN were synthesized and tested as inhibitors. 5'-Methylthio-Immucillin-A (MT-ImmA) is a slow-onset tight-binding inhibitor giving a dissociation constant (K(i)(*)) of 77 pm. Substitution of the methylthio group with a p-Cl-phenylthio group gives a more powerful inhibitor with a dissociation constant of 2 pm. DADMe-Immucillins are better inhibitors of E. coli MTAN, since they are more closely related to the highly dissociative nature of the transition state. MT-DADMe-Immucillin-A binds with a K(i)(*) value of 2 pm. Replacing the 5'-methyl group with other hydrophobic groups gave 17 transition state analogue inhibitors with dissociation constants from 10(-12) to 10(-14) m. The most powerful inhibitor was 5'-p-Cl-phenylthio-DADMe-Immucillin-A (pClPhT-DADMe-ImmA) with a K(i)(*) value of 47 fm (47 x 10(-15) m). These are among the most powerful non-covalent inhibitors reported for any enzyme, binding 9-91 million times tighter than the MTA and SAH substrates, respectively. The inhibitory potential of these transition state analogue inhibitors supports a transition state structure closely resembling a fully dissociated ribooxacarbenium ion. Powerful inhibitors of MTAN are candidates to disrupt key bacterial pathways including methylation, polyamine synthesis, methionine salvage, and quorum sensing. The accompanying article reports crystal structures of MTAN with these analogues.


Assuntos
Desoxiadenosinas/química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , N-Glicosil Hidrolases/antagonistas & inibidores , Tionucleosídeos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/química , Hidrólise , Cinética , N-Glicosil Hidrolases/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...